Морской хронометр. История изобретения и производства. Хронометр. Хранение. Практическое применение Хронометры в наручных часах

Рассказываем о том, как морские хронометры помогали создавать империи

Определение координат в море долгое время было важнейшим из искусств. Если широту местонахождения судна капитаны научились определять по звездам и высоте полюса над горизонтом еще в XV веке, то поиски точного метода определения долготы растянулись на три следующих столетия. И поиски эти напоминали создание атомной бомбы: кто опередит других, станет самым сильным.

Ведь только что завершилась эпоха великих географических открытий, и ведущим европейским державам хотелось во что бы то ни стало застолбить открытые земли за собой. Торговля и судоходство в те времена расширялись быстрее, чем промышленность: зачем что-то производить, когда можно просто награбить, привезти и продать с баснословной прибылью.

Самые лакомые колонии находились на западе и востоке, а в путешествиях туда как раз было крайне необходимо знание долготы. Немало кораблей погибло, не достигнув всего нескольких миль до желанной цели, так как страх и угроза бунта на корабле заставляли капитанов поворачивать назад. Еще больше разбивалось о прибрежные скалы во время штормов и туманов.

В итоге в 1714 году английский парламент объявил международный конкурс на создание прибора или метода определения долготы с погрешностью в 20 или 30 миль за время плавания в Вест-Индию и обратно.

Были назначены и премии в 10, 15, 20 тысяч фунтов стерлингов (колоссальные по тем временам деньги) в зависимости от точности определения долготы. Для принятия и рассмотрения предложений по этому закону было создано Бюро долготы, которое возглавил сам отец физики Исаак Ньютон.



Сэр Исаак Ньютон

С самого начала наметились два способа определения долготы: астрономический и механический, с применением часов.

За астрономию ратовал Галилео Галилей, который создал неплохой, в общем-то, метод определения долготы по периодам затмений открытых им четырех спутников Сатурна. Однако сделать это не представлялось возможным порой даже в Италии, где облака – редкие гости.

Что уж говорить о море: попробуйте сначала во время небольшой качки хотя бы поймать в телескоп Сатурн, не говоря уже о его спутниках. А что касается механического способа, то после нескольких попыток представить морские часы Ньютон, изучив их, написал в 1714 году:

По точным часам можно определить долготу. Но так как судно находится в постоянном движении, испытывает перепады жары и холода, воздействие влажного и сухого воздуха, а сила гравитации меняется на разных широтах, такие часы пока создать невозможно, и вряд ли такое когда-нибудь произойдет в будущем.

И все же неслыханная награда заставила напрячься лучшие умы того времени, и в 1735 году британский мастер Джон Гаррисон (1693-1766) создал-таки великий морской хронометр Н1 “Кузнечик”.



Создатель морских хрономеров Джон Гаррисон. Фото: http://www.rmg.co.uk

Роль маятника в нем выполняли два длинных балансовых рычага с шарами на обоих концах. Соединенные друг с другом в середине, они формировали букву Х с колеблющимися в противоположных направлениях палочками, которые тем самым нивелировали воздействие качки. Приводились рычаги в действие четырьмя балансовыми пружинами. Перепады температур компенсировались латунными и стальными стержнями, к которым крепились концы пружин.



Первый морской хронометр Джона Гаррисона H1 (“Кузнечик”), 1735 г. Фото: http://collections.rmg.co.uk

В тестовом походе до Лиссабона и обратно “Кузнечик” заслужил весьма положительные отзывы, и в сводках Гринвичской обсерватории появилось сообщение об изобретении Гаррисона. Однако все это не убедило парламент выдать Гаррисону положенную премию, он лишь получил грант на создание новых хронометров.

Ходит байка, что Джон Гаррисон не особо переживал из-за того, что премию за изобретение “Кузнечика” ему не вручили, поскольку его хронометр тайно приобрели пираты, которые заплатили ему больше положенной суммы

Мастер совершенствовал свой хронометр всю жизнь. Второй хронометр Н2 отличался от первого устройством для стабилизации импульса с промежуточными пружинами.

В нем две цилиндрические пружины подзаводились каждые полчаса, и крутящий момент был всегда на одном и том же уровне. Также в механизме в качестве модуля постоянной силы была фузея. Испытывать Н2 не стали, так как шла война с Испанией, и адмиралтейство опасалось, что грозное стратегическое оружие — хронометр — попадет в руки врагам.

Если первый “Кузнечик” хранится в Гринвичской обсерватории, то судьба Н2 и Н3 не столь известна (хотя устройство их механизмов описано весьма подробно). Думаю, и здесь без пиратов не обошлось.



Морские хронометры Джона Гаррисона — H2 и H3. Фото: http://collections.rmg.co.uk

А премию свою в 20 тысяч фунтов Гаррисон все же получил в 1759-м, за хронометр Н4, который уже походил на известные нам морские хронометры — этакие настольные или очень большие карманные часы.



Первый морской хронометр Джона Гаррисона H1 (“Кузнечик”) 1735 г. в. вместе с выигравшим премию хронометром H4 1759 г. в. (в центре). Фото: http://www.e-reading.club/chapter.php/103039/23/Hauz_-_Grinvichskoe_vremya_i_otkrytie_dolgoty.html, http://collections.rmg.co.uk

Механизм помещался в двух серебряных корпусах диаметром 10,5 см. Циферблат был покрыт белой эмалью; на этом белом фоне имелись украшения, выполненные черным цветом. Часовая и минутная стальные стрелки окрашены в голубой цвет; имелась также центральная секундная стрелка, которая вращалась между двумя другими стрелками. Заводились часы через отверстие в обратной стороне внутреннего корпуса.



Морской хронометр Джона Гаррисона H4. Фото: http://collections.rmg.co.uk

Морские часы №4 Гаррисона, в отличие от трех его первых морских часов, не подвешивались на кардановом подвесе, а во время качки корабля клались на мягкую подушку, и посредством внешнего корпуса и градуированной дуги их положение могло регулироваться так, чтобы они были слегка наклонены к горизонтали.

Испытал их в походе на Ямайку сын мастера Уильям. Корабль “Дептфорд” отплыл из Портсмута 18 ноября 1761 года, и когда спустя 61 день прибыл в Порт-Рояль, Н4 отстал лишь на 9 секунд!

Заимев точные часы, капитаны королевского флота получили колоссальное преимущество над кораблями других держав, и именно благодаря часам вскоре возникла великая Британская империя, над которой никогда не заходило Солнце.

Если испанцы, французы и голландцы были вынуждены на всякий случай запасаться десятками бочек пресной воды и продовольствия, то англичане, имея точные сведения о долготе, вместо продуктового “такелажа” запасались лишними бочками пороха, пушками и ядрами, что, как правило, решало исход сражений в их пользу.

Но самая главная заслуга Джона Гаррисона все же состоит в том, что он вселил уверенность в других лучших мастеров: Ларкума Кендалла, Томаса Мюджа, Джона Арнольда, Пьера Леруа, Фердинанда Берту, Авраама-Луи Бреге. С изобретением анкерного спуска хронометры стали еще более точными, а славу крупнейшего производителя завоевал Улисс Нарден.

Германскому флоту морские хронометры поставляла компания A. Lange & Söhne из Гласхютте. А когда все оборудование вместе с технической документацией было экспроприировано и вывезено в Советский Союз, вскоре советские корабли стали получать морские хронометры “Полет” с механизмом, который представлял собой точную копию калибра ALS 48.

И сейчас, когда координаты судна автоматически определяются связанными со спутниками GPS бортовыми компьютерами, опытные капитаны предпочитают иметь на всякий пожарный старый добрый механический морской хронометр.

Автор статьи: Тимур Бараев

нашли ошибку в тексте? выделите её и нажмите ctrl + enter

  • 45. Система «Коспас-Сарсат». Аварийные буи «эпирб». Аварийные радиостанции.
  • 47.) Действия по оказанию помощи терпящему бедствие судну и спасение людей после его гибели.
  • 48. Фазовые рнс. Точные навигационные системы удс. Оценка точности.
  • 49. Определение места по звездам и планетам. Оценка точности.
  • 50. Управление буксирными составами и их формирование.
  • 51. Характеристики персональных компьютеров. Задачи, решаемые с их помощью на судне.
  • 52. Определение поправки компаса.
  • 53. Тропические циклоны и расхождение с ними.
  • 54. Составление грузового плана
  • 55. Выверка секстана
  • 1. Проверка параллельности оптической оси зрительной трубы плоскости азимутального лимба
  • 2. Проверка перпендикулярности большого зеркала плоскости азимутального лимба
  • 3. Проверка перпендикулярности малого зеркала плоскости азимутального лимба
  • 56. Плавание при помощи рлс
  • 1. Способ веера пеленгов и расстояний.
  • 2. Способ траверзных расстояний (рис. 21.2).
  • 21.3.2. Определение места судна по расстояниям до нескольких ориентиров
  • 1. Расстояния измеряются до точечных ориентиров (рис. 21.3).
  • 2. Расстояния измеряются до участка береговой черты с плавными очертаниями и «точечного» ориентира (рис. 21.4).
  • 3. Расстояния измеряются до участков береговой черты с плавными очертаниями (рис. 21.5).
  • 21.3.3. Определение места судна по радиолокационному пеленгу и расстоянию до одного ориентира (рис. 21.6)
  • 57. Международные документы по безопасной перевозке грузов
  • 58.Судовой Хронометр. Измерение времени на судне. Гринвичское, международное, стандартное корректируемое, поясное, местное и судовое время.
  • 59.Сигналы судовых тревог. Обязанности членов экипажа по тревогам. Аварийные партии, состав и снабжение. Тренировки членов аварийных партий и групп.
  • 60. Контроль технического состояния судна. Классификационные общества технического надзора
  • 61. Чтение украинских, английских и российских навигационных карт. Условные обозначения на картах.
  • 62. Якорное устройство
  • 63. Перевозка опасных грузов. Кодекс по перевозке опасных грузов (imdg-Code)
  • Часть I - Информация и инструкции для всех опасных грузов, включая Алфавитный иОон числовые списки
  • Часть II - Классы 1, 2 и 3:
  • Часть III - Классы 4.1, 4.2, 4.3, 5.1 и 5.2:
  • Часть IV - Классы 6.1, 6.2, 7, 8 и 9:
  • 64. Подборка английских или российских карт и пособий на переход. Навигационная проработка и подготовка к переходу.
  • 65. Грузовое устройство. Люковые закрытия. Оценка прочности. Правила технической эксплуатации.
  • 66.Перевозка сыпучих грузов
  • 67.Организация вахтенной службы при плавании в особых обстоятельствах
  • 69.Особенности перевозки грузов на танкерах
  • 70. Пособие «Океанские пути мира». Рекомендованные пути. Системы разделения движения. Принципы выбора пути перехода.
  • 71. Характеристика волнения и элементов волны. Штормование судов. Диаграммы Ремеза и Богданова
  • 72. Международня конвенция о грузовой марке 1966г. Виды судовых грузовых марок. Запас плавучести
  • 72. Международная Конвенция о грузовой марке 1966г.Виды грузовых марок.Запас плавучести.
  • 73. Английсикие и российские лоции.
  • 74. Ковенция солас-74
  • 75. Удифферентовка и устрвнение крена с использованием суд.Документации и приборов
  • 76. Предвычисление высоты уровней приливов и приливных течений по таблицам и картам
  • 77. Международная конвенция по подготовке,дипломированию моряков и несению вахты(пднв 78/95)
  • 78. Контроль общей и местной прочности с использованием судовой документации и приборов.
  • 79. Условные обозначения на факсимильных картах погоды и волнения.
  • 80. Международная конвенция по защите морской среды от загрязнения(марпол73/78) и недопущения разлива нефтепродуктов(ойлпол)
  • 81. Основные течения в Мировом океане.
  • 82.Основные характеристики барических образований:циклонов,антициклонов,фронтов
  • 83. Основыне судовые документы и документация судового мостика
  • 84.Обеспечение непотопляемости аварийного судна.Операивная информация о непотопляемости
  • 85. Система ограждения навигационных опасностей мамс
  • 86. Плавание судов в особых случаях
  • 87. Международный кодекс по упарвлению безопасностью судов и защите среды(мкуб)
  • 88. Питание рек.Особенности весеннего,летнего и зимнего режима.Течения в речнос потоке
  • В центре циферблата, разбитого на 12 часов, укреплены часовая и минутная стрелки, движущиеся по общему циферблату. Ниже располагается секундная стрелка, перемещающаяся по секундному циферблату скачками через 0,5 секунд. В верхней части циферблата хронометра расположен циферблат завода, разделенный штрихами на семь частей по 8 часов каждый. Оцифровка интервалов дана от 0 до 56ч, т.е. максимальный завод рассчитан на 56 часов работы хронометра.

    По циферблату завода движется стрелка, которая показывает количество часов, протекшее с момента завода хронометра.

    Хронометр следует заводить ежесуточно в одно и то же время (например, в 8 ч утра), чтобы в течение каждых суток действовала одна и та же часть пружины, что обеспечивает постоянство суточного хода. Обычно заводят хронометр так, чтобы он мог идти двое суток, т.е. после завода стрелка завода должна указывать на деление 8 ч.

    А перед заводом при условии регулярного завода в одно и тоже время стрелка циферблата завода должна указывать на деление с цифрой 32 ч

    Поправкой хронометра называют разность между всемирным временем и показанием хронометра в один и тот же физический момент, т. е.

    где u XP - поправка хронометра; T ГР - всемирное время; Т XP - показания хронометра. Поправка хронометра с течением времени изменяется. Это изменение неодинаково у различных хронометров. Оно зависит от регулировки хронометра и от внешних условий. Изменение поправки хронометра характеризуется ходом хронометра со. Качество прибора определяется постоянством суточного хода. Поправка хронометра определяется по специальным радиосигналам времени. Время, программы передач и другие сведения сообщаются в Извещениях мореплавателям. Определяемая поправка хронометра и суточный ход, дата, всемирное время, название радиостанции, фамилия принявшего сигналы и некоторые другие данные записывают в специальный журнал, называемый хронометрическим

    Местное среднее время (Т м ) - это это промежуток времени между моментом нижней кульминации среднего Солнца и текущим моментов времени для наблюдателя, находящегося на меридиане с долготой . Гринвичское время (Т гр ) - это местное время гринвичского меридиана.

    Гринвичское время иногда называют всемирным. Оно является аргументом для входа в Морской астрономический ежегодник (МАЕ).

    Поясным временем Т п называется местное время центрального меридиана данного часового пояса, принятое по всей территории пояса. Пояс с центральным меридианом Гринвича считается нулевым, а от него идет нумерация поясов к E или W, до двенадцатого пояса включительно.Вся Земля разделена на 24 часовых пояса по 15° (или 1 ч) долготы в каждом. Меридианы 0°, 15°, 30° и далее через 15° (до 180°) являются центральными для каждого пояса, меридианы с долготами 7°30", 22°30" и далее - это границы поясов. Они точно следуют по меридианам только в открытом море и океане.

    Судовым временем Т с называется поясное время того часового пояса, по которому поставлены судовые часы. Судовое время обычно отсчитывается с точностью до 1 м.

  • В течение 200 лет измерение времени было неотъемлемой частью морской навигации, а палубные часы были, по сути, единственным способом определить долготу расположения корабля. Наш материал расскажет об изобретении Джоном Гаррисоном морского хронометра и о том, как Улисс Нардан привёл это устройство к совершенству.

    Морской хронометр — это не просто прибор, по которому кок может узнать, в котором часу подавать обед. Исторически это устройство несло значительно более важную функцию — без помощи хронометра невозможно было определить долготу, а значит — точное местоположение корабля. Иначе говоря, от времени зависела навигация и — жизнь моряков.

    Глава 1. Море времени

    Дело в том, что широта — это абсолютная величина, то есть доля расстояния от экватора до полюса. А вот долгота «эфемерна», отсчитывается она от определённого меридиана, и за ноль можно принимать любой пункт (занятно, что разные страны в разное время считали нулевыми совершенно разные меридианы). Когда корабль находится близ обозначенного на карте берега, определить долготу можно, но в открытом море это сугубо расчётная величина, при измерении которой ко всему прочему не от чего оттолкнуться.


    Методика определения долготы с помощью морского хронометра.

    В 1530 году нидерландский математик Фризиус Реньер Гемма предложил относительно простой способ определения долготы с помощью угла нахождения Солнца (днём) или Полярной звезды (ночью) над горизонтом в строго определённое время, например, в полдень или полночь. При этом точность измерения угла была достаточно высока, а вот приблизительное понимание полудня приводило к значительным погрешностям. Плюс-минус несколько временных минут могли дать несколько градусов погрешности — а при плавании на большие расстояния это означало отклонение на десятки и сотни миль! Проблема была столь значима, что в 1714 году британский парламент учредил специальный орган — Комиссию долгот, единственным назначением которой было поощрение изобретательства, направленного на решение задачи.

    Создание абсолютно точных морских часов упиралось в несколько вопросов. Во‑первых, высокая влажность, солевые испарения, изменение давления и так далее приводили к механическим изменениям элементов механизма. Они истирались, деформировались, ломались. А во-вторых, что более значимо, обычный маятник, работающий за счёт гравитации, в плавании функционировал не очень хорошо: в зависимости от области плавания разница в гравитационных силах, воздействующих на него, могла достигать 0,2%. И, конечно, корабль постоянно качало.


    H1 Первый морской хронометр Джона Гаррисона.

    Первые попытки создать морской хронометр, работающий независимо от качки и прочих факторов, были предприняты в конце XVII века. Известны разработки Христиана Гюйгенса, Уильяма Дерема и других учёных. Но в уже упомянутом 1714 году свежеобразованная Комиссия долгот учредила приз в 10 000 фунтов (впоследствии сумму подняли до 20 000 фунтов) за разработку подобных часов — и за дело взялись обычные часовщики. Судите сами: на наши деньги это от 2 до 4 миллионов фунтов стерлингов!

    Преуспел в итоге английский часовщик-самоучка Джон Гаррисон. Они с братом Джеймсом были специалистами по «часовым шкафам», большим напольным часам с длинными маятниками. За «тендер» Гаррисон взялся в 1730 году в возрасте 37 лет, и свой первый морской хронометр, известный ныне как H1, продемонстрировал в 1736-м. В том же году он совершил испытательное плавание из Лондона в Лиссабон на паруснике «Центурион» и обратно на другом корабле «Орфорд» (из-за того, что капитан «Центуриона» внезапно скончался в Лиссабоне). По прибытии время сверли с «образцовым» экземпляром — отклонение всё-таки было, хотя и не очень большое. Гаррисон понял, что работа не так проста, и с первой попытки решить вопрос не удастся.


    Вторая и третья модель хронометр Гаррисона.

    Гаррисон разработал модель H2, которую планировали испытать при плавании через океан, но испытания отменили из-за начала войны между Англией и Испанией, а пока шли боевые действия, часовщик начал строить вариант H3, ещё более совершенный. В нём он впервые в истории часового искусства применил подшипники и биметаллические детали, позволяющие компенсировать температурные расширения.


    Мы не будем подробно рассказывать о дальнейшем пути Гаррисона — об этом написана не одна книга. Скажем лишь, что те самые знаменитые часы H4, которые в итоге решили проблему морского хронометража, он закончил в 1761 году в возрасте 68 лет, а несколькими годами позже показал модель H5, которая была официально признана Комиссией долгот работающей. В 1772 году престарелый Гаррисон, наконец, получил свой приз, не считая более 4000 фунтов (на наши деньги — около миллиона фунтов), выделенных ему за эти годы на разработки.


    H4 Четвёртая модель Гаррисона была уже не настольным хронометром, а подобием карманных часов.

    Часы Гаррисона распространились по миру — они стояли на кораблях исследователей, в частности, Джеймса Кука, и на военных судах. Сегодня на оригиналы работы Гаррисона и его наследников можно посмотреть в Музее науки и техники в Лондона, в Гринвичской обсерватории и ряде других музеев.


    H5 Финальная конструкция Гаррисона, за которую он получил «призовой фонд» Комиссии долгот.

    Оставалось одно «но». Морские часы Гаррисона были сложным и дорогих механизмом. Делать такие часы умели считанные часовщики, и очень небольшой процент кораблестроителей оборудовали свои суда морскими хронометрами подобной точности. Вплоть до середины XIX века морские хронометры трудно было назвать серийной продукцией — а требовалось их очень много, в особенности когда Англия первой издала указ об обязательной установке этих устройств на все военные и гражданские суда. Вот тут-то и появился Улисс Нардан.


    Глава 2. Вежливость королей

    Леонард-Фредерик Нардан был одним из многих швейцарских часовщиков начала XIX века. Швейцария тогда начинала набирать силу, выходя в лидеры мирового производства хронометров и перехватывая это знамя у доминирующих британцев. Главным часовым городом материковой Европы была Женева. Темпы роста швейцарцев были неимоверными. Сравните: за 1800 год Швейцария и Англия произвели равное количество, по 200 000 часов, а полвека спустя, в 1850-м, Англия выпустила всё те же 200 тысяч, а Швейцария — 2 200 000 устройств!

    В первую очередь это было связано с «серийной революцией»: швейцарцы начали отходить от традиционного принципа производства, семейного дела. До того часовщики, конечно, объединялись в профсоюзы, но работали сами по себе, делали всё в одиночку — от механизма до росписи циферблата, обучали тайнам мастерства детей, и, по сути, были ближе к ювелирному делу, нежели к механическому производству, где уже давно правили бал артели и мануфактуры. В первой половине XIX века Швейцария постепенно перешла к мануфактурной схеме работы, при этом не потеряв высочайшего качества, создавшего славу их продукции.


    Карманные часы Ulysse Nardin середины XIX столетия.

    Леонард-Фредерик был классическим часовщиком. На его работах стояла личная маркировка, и свои умения он передал сыну, Улиссу, родившемуся в Ле-Локле 22 января 1823 года. Ле-Локль тогда не был часовой столицей мира (как уже говорилось, ей была скорее Женева), но ряд часовщиков там работал. В Швейцарии в принципе не было городка, где бы не работало хотя бы несколько часовщиков. К слову сказать, часовую индустрию в Ле-Локле ко всему прочему сильно «подсекла» Великая французская революция. Из-за приграничного положения городка там было много сочувствующих якобинцам, и швейцарские власти проводили репрессивную политику во избежание революции; целый ряд сильных часовщиков эмигрировали во Францию, в основном — в Безансон.


    Мануфактура на улице Жарден в Ле-Локле: сюда компания Ulysse Nardin перебралась в 1865 году.

    Но вернёмся к Улиссу Нардану и морским хронометрам. Улисс продолжил дело отца — но уже на новый лад. В 1846 году он вопреки семейным традициям основал мануфактуру с наёмными работниками. Назвал он её, как и следовало, собственным именем — Ulysse Nardin. Мануфактура сходу начала работать в двух направления — карманных и морских часов. Карманные часы всегда пользовались спросом и обеспечивали прибыль, морские — сулили контракты с армией.

    В 1860 году Улисс внедрил в работу специфический прибор — астрономический калибратор высокой точности, позволявший откалибровать карманные часы до десятых долей секунды. Это устройство изобрёл в начале века «отец швейцарских часов» Жак-Фредерик Урье, но оно практически не применялось для обычных хронометров. Спешим напомнить, что в то время часы нередко не имели даже минутной стрелки, а на вопрос «который час» вполне корректным считался ответ «да где-то полдень».


    Последствия не заставили себя ждать. В 1862 году на Всемирной выставке в Лондоне карманные часы Ulysse Nardin получили свою первую золотую медаль. Это была высочайшая на тот момент награда в отрасли, как если бы современный фильм получил одновременно «Оскара», «Золотую пальмовую ветвь» и «Золотого медведя». В 1865 году мануфактура переехала на улицу Жарден (если переводить — Садовую улицу), где располагается по сей день. Руководство Улисс разделил с сыном — достигшим 21 года Полем-Давидом.

    Параллельно развивалось и производство морских хронометров. Они уже далеко ушли от оригинальной конструкции Гаррисона и базировались как на внедрённых английским часовщиком принципах, так и на других, конкурирующих схемах, появившихся в конце XVIII — начале XIX веков. К слову, Нардан начал применять биметаллы и другие «ноу-хау» морских часов в обычных моделях — так до него не делал практически никто.


    Морской хронометр производства Ulysse Nardin.

    Проблемой морских хронометров был, как говорилось выше, их труднодоступность. Ни один производитель не мог быстро изготовить серию из, скажем, 50 морских хронометров, чтобы обеспечить однотипными приборами флот какой-нибудь страны. Они по‑прежнему оставались штучным товаром. Имея опыт в мануфактурном производстве часов высочайшего качества, Нардан разработал ряд моделей морских хронометров, обеспечивающих идеальную точность и при этом подходящих для более или менее серийного производства. Впоследствии это дало значительный эффект. Например — забежим вперёд — в 1904 году компания подписала контракт с Императорским двором Японии об оснащении морскими хронометрами всего японского флота. Аналогичный контракт она пыталась подписать с Россией, но с бумагами что-то не сложилось, и в итоге партия морских хронометров Ulysse Nardin была приобретена российским флотом в частном порядке единичной сделки. Возник исторический казус: во время русско-японской войны 1904−1905 годов корабли обеих воюющих сторон были оснащены одними и теми же хронометрами!


    Часы Ulysse Nardin, удостоенные золотой награды на Всемирной выставке в Чикаго в 1893 году.

    Но увидеть успех своего морского предприятия Улиссу было не суждено — он скоропостижно скончался в 1876 году в возрасте 53 лет. Спустя два года на Всемирной выставке в Париже Ulysse Nardin получила сразу две золотые медали — вторую за карманные часы и первую за морские хронометры. Четвёртую такую медаль компания получила на Всемирной выставке в Чикаго 1893 года — той самой, где блистал король электричества Никола Тесла. Вообще, с момента основания компания получила более 4300 (!) различных отраслевых наград.

    Начиная с конца XIX века, компания защитила целый ряд патентов на «усложнения», то есть дополнительные функции, повышающие точность или придающие часам новые возможности. Вообще говоря, в специальной литературе тип часов, на которых специализируется компания, и сегодня называется grand complication watch — некоторые его ветви напрямую вышли из профессиональных приборов для измерения времени XIX века и сегодня требуют точно такой же высочайшей точности в изготовлении наряду с сохранением традиций. Мы не будем останавливаться на технических новшествах начала XX века. Для примера скажем, что в 1936 году компания выпустила 24-дюймовый карманный хронометр, секундная стрелка которого отмеряла десятые доли секунды — впервые в отрасли.


    Глава 3. Морская слава

    Вернёмся к морским хронометрам. В 1975 году, Невшательская обсерватория выпустила официальный альманах со статистическим данными по истории швейцарского часового дела. В соответствии с ним из 4504 сертификатов качества, выданных с 1846 по 1975-й швейцарским морским хронометрам, 4324 (то есть 95%) получили устройства Ulysse Nardin. Морские часы компании получили 2411 отраслевых наград (из них 1069 — первых призов) и суммарно 14 медалей Всемирных выставок, из них 10 — золотых.


    Мануфактура Ulysse Nardin. Ручная сборка часов.

    В то же время значение морских хронометров постепенно стало снижаться. Сперва это было связано с «кварцевой революцией», то есть появлением новой технологии, использующей кристалл кварца в качестве колебательной системы в часах. В Швейцарии это привело, как известно, к так называемому «Кварцевому кризису», когда на рынок массово пришли недорогие и точные японские часы. Но это другая история.

    Морские хронометры начали было переходить на кварц — но здесь революции и кризиса не случилось, потому что уже в 1980-е годы корабли стали массово использовать спутниковую навигацию для определения местоположения. Это сделало морские хронометры попросту ненужными — теперь долготу определял компьютер. Впрочем, любой современный корабль в обязательном порядке оборудован кварцевым высокоточным хронометром на случай сбоя системы GPS. Когда с сигналом всё в порядке, этот хронометр корректируется, сверяясь с мировым временем через тот же спутник.

    В 1996 году в память о своей навигационной истории компания выпустила легендарную уже модель Marine Chronometer 1846 с механизмом Perpetual Ludwig, названном в честь разработчика, часовщика Людвига Эшслина. Как нетрудно догадаться, это была модель с вечным календарём, и она стала родоначальницей коллекции Marine, символизирующей тесную связь марки с морем. Позже, в 1999 году, появилась модель GMT Perpetual, сочетающая вечный календарь с несколькими временными зонами — компания в полной мере оправдывала славу разработчика класса grand complication watch. По сей день компания ежегодно получает патенты на новые механизмы и представляет модели со всё более широкими возможностями, не изменяя при этом классическим дизайнерским традициям.

    А что же Ulysse Nardin? Компания успешно пережила все кризисы и вовремя вышла из рухнувшего в один момент рынка морских хронометров. Возник вопрос: что же делать с многочисленными наработками и полуторавековыми традициями в этой области? И ответ не заставил себя долго ждать. Дело в том, что высокоточные технологии морского хронометража не устарели и не стали бесполезными. Они просто перестали быть нужными в конкретной отрасли — в навигации. Но это не отменяет их невероятного качества, выносливости в любых экстремальных условиях, полной независимости от изменения температуры и влажности — и так далее. Поэтому технологии окончательно перешли в область, в которой компания и без того была одни из мировых лидеров, то есть в производство высококачественных наручных часов.


    Ulysse Nardin Marine Torpilleur на страницах «Популярной механики»

    Последний шедевр из коллекции Ulysse Nardin Marine, напрямую связанный с морской историей и традициями, — это модель Marine Torpilleur. В коллекции уже были часы Marine Grand Deck («верхняя палуба») и Marine Regatta («регата»), torpilleur же переводится как «торпедный катер». Это название подчёркивает как динамику и функциональность модели (такие катера были лёгкими и маневренными), так и исторические военные связи компании — про японский и русский флоты мы рассказывали выше.

    Сердце модели — калибр UN-118 с автоподзаводом (запас хода при этом — 60 часов) и кремниевым спуском. Диаметр калибра — 31,6 мм, толщина — 6,45 мм, состоит он из 248 деталей, имеет функции индикации часов, минут, секунд, запаса хода и даты с быстрой корректировкой в любом направлении. О морской теме в первую очередь говорит дизайн циферблата — римские цифры, исторические «морские» шрифты, характерные формы стрелок. И, конечно, на море намекает и очень серьёзная для подобных часов водонепроницаемость, до 50 метров!


    Калибор UN-118.

    Marine Torpilleur диаметром 42 мм представлен в трёх моделях — из 18-каратного розового золота с белым циферблатом на кожаном ремешке, а также из нержавеющей стели с белым циферблатом на кожаном ремешке и с синим циферблатом на браслете.


    Вообще говоря, компания Ulysse Nardin — это пример гармоничного сочетания исторических традиций и высоких технологий XXI века. Например, в 118-м калибре спуск сделан из кремния и синтетического алмаза, и эта технология, известная как DIAMonSIL, является специфическим ноу-хау, запатентованным всего несколько лет назад. С другой стороны, циферблаты Ulysse Nardin делаются посредством традиционной ручной техники — мы бывали на их производстве Donzé Cadrans в Ле-Локле и .


    Ulysse Nardin Marine Torpilleur

    И, конечно, это море. Не зря же Джон Гаррисон 250 лет назад изобрёл морские часы, а Улисс Нардан 150 лет назад довёл их до совершенства.