Первым счетным средством является. История вычислительной техники. Начальный этап развития вычислительной техники

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

Российский государственный торгово-экономический университет

Уфимский институт (филиал)

Факультет юриспруденции и заочного обучения

Курс 1 (5,5 г.)

Специальность 080507.65 «Менеджмент организации»

Кафедра «Управление внутренней

и международной торговлей »

Журавлев Сергей Владимирович

История развития вычислительной техники. Краткая историческая справка. Поколения ЭВМ. Перспективы развития вычислительной техники.

Контрольная работа

по дисциплине: «Информатика»

К защите допускаю:

Руководитель: Закирьянов Ф.К._____________

(подпись)

_________________

Оценка при защите

_______________________________________

Дата_________Подпись__________

Введение................................................................................. стр. 3

Начальный этап развития вычислительной техники.............. стр. 4

Начало современной истории электронной

вычислительной техники………………………………...……. стр. 7

Поколения ЭВМ....................................................................... стр. 9

Персональные компьютеры..................................................... стр. 13

Что впереди? ............................................................................ стр. 16

Заключение……………………………………………………… стр. 18

Список литературы.............................................................. стр. 20

Введение

Слово «компьютер» означает «вычислитель», т.е. устройство для

вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более 1500 лет тому назад для счета использовались счетные палочки, камешки и т.д.

В наше время трудно представить себе, что без компьютеров можно

обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В конце XX века невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.

В данном реферате мы рассмотрим историю развития вычислительной техники, а также краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.

Начальный этап развития вычислительной техники.

Все началось с идеи научить машину считать или хотя бы складывать многоразрядные целые числа. Еще около 1500 г. великий деятель эпохи Просвещения Леонардо да Винчи разработал эскиз 13-разрядного суммирующего устройства, что явилось первой дошедшей до нас попыткой решить указанную задачу. Первую же действующую суммирующую машину построил в 1642 г. Блез Паскаль – знаменитый французский физик, математик, инженер. Его 8-разрядная машина сохранилась до наших дней.

Рис.1. Блез Паскаль (1623 – 1662) и его счетная машина

От замечательного курьеза, каким восприняли современники машину Паскаля, до создания практически полезного и широко используемого агрегата – арифмометра (механического вычислительного устройства, способного выполнять 4 арифметических действия) – прошло почти 250 лет. Уже в начале XIX века уровень развития ряда наук и областей практической деятельности (математики, механики, астрономии, инженерных наук, навигации и др.) был столь высок, что они настоятельнейшим образом требовали выполнения огромного объема вычислений, выходящих за пределы возможностей человека, не вооруженного соответствующей техникой. Над ее созданием и совершенствованием работали как выдающиеся ученые с мировой известностью, так и сотни людей, имена многих из которых до нас не дошли, посвятивших свою жизнь конструированию механических вычислительных устройств.

Еще в 70-х годах нашего века на полках магазинов стояли механические арифмометры и их “ближайшие родственники”, снабженные электрическим приводом – электромеханические клавишные вычислительные машины. Как это часто бывает, они довольно долго удивительным образом соседствовали с техникой совершенно иного уровня – автоматическими цифровыми вычислительными машинами (АЦВМ), которые в просторечии чаще называют ЭВМ (хотя, строго говоря, эти понятия не совсем совпадают). История АЦВМ восходит еще к первой половине прошлого века и связана с именем замечательного английского математика и инженера Чарльза Бэббиджа. Им в 1822 г. была спроектирована и почти 30 лет строилась и совершенствовалась машина, названная вначале “разностной”, а затем, после многочисленных усовершенствований проекта, “аналитической”. В “аналитическую” машину были заложены принципы, ставшие фундаментальными для вычислительной техники.

1. Автоматическое выполнение операций.

Для выполнения расчетов большого объема существенно не только то, как-быстро выполняется отдельная арифметическая операция, но и то, чтобы между операциями не было “зазоров”, требующих непосредственного человеческого вмешательства. Например, большинство современных калькуляторов не удовлетворяют этому требованию, хотя каждое доступное им действие выполняют очень быстро. Необходимо, чтобы операции следовали одна за другой безостановочно.

2. Работа по вводимой “на ходу” программе.

Для автоматического выполнения операций программа должна вводиться в исполнительное устройство со скоростью, соизмеримой со скоростью выполнения операций. Бэббидж предложил использовать для предварительной записи программ и ввода их в машину перфокарты, которые к тому времени применялись для управления ткацкими станками.

3. Необходимость специального устройства – памяти – для хранения данных (Бэббидж назвал его “складом”).

Рис. 2. Чарльз Бэббидж (1792 – 1871) и его “аналитическая машина”

Эти революционные идеи натолкнулись на невозможность их реализации на основе механической техники, ведь до появления первого электромотора оставалось почти полвека, а первой электронной радиолампы – почти век! Они настолько опередили свое время, что были в значительной мере забыты и переоткрыты в следующем столетии.

Впервые автоматически действующие вычислительные устройства появились в середине XX века. Это стало возможным благодаря использованию наряду с механическими конструкциями электромеханических реле. Работы над релейными машинами начались в 30-е годы и продолжались с переменным успехом до тех пор, пока в 1944 г. под руководством Говарда Айкена – американского математика и физика – на фирме IBM (International Business Machines) не была запущена машина “Марк-1”, впервые реализовавшая идеи Бэббиджа (хотя разработчики, по-видимому, не были с ними знакомы). Для представления чисел в ней были использованы механические элементы (счетные колеса), для управления – электромеханические. Одна из самых мощных релейных машин РВМ-1 была в начале 50-х годов построена в СССР под руководством Н.И.Бессонова; она выполняла до 20 умножений в секунду с достаточно длинными двоичными числами.

Однако, появление релейных машин безнадежно запоздало и они были очень быстро вытеснены электронными, гораздо более производительными и надежными.

Начало современной истории электронной вычислительной техники

Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

Первой действующей ЭВМ стал ENIAC (США, 1945 – 1946 гг.). Его название по первым буквам соответствующих английских слов означает “электронно-числовой интегратор и вычислитель”. Руководили ее созданием Джон Моучли и Преспер Эккерт, продолжившие начатую в конце 30-х годов работу Джорджа Атанасова. Машина содержала порядка 18 тысяч электронных ламп, множество электромеханических элементов. Ее энергопотребление равнялось 150 кВт, что вполне достаточно для обеспечения небольшого завода.

Практически одновременно велись работы над созданием ЭВМ в Великобритании. С ними связано прежде всего имя Аллана Тьюринга – математика, внесшего также большой вклад в теорию алгоритмов и теорию кодирования. В 1944 г. в Великобритании была запущена машина “Колосс”.

Эти и ряд других первых ЭВМ не имели важнейшего с точки зрения конструкторов последующих компьютеров качества – программа не хранилась в памяти машины, а набиралась достаточно сложным образом с помощью внешних коммутирующих устройств.

Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли “принципы фон Неймана”. Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов – принцип хранимой программы – требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC) была построена в Великобритании в 1949 г.

Рис. 3. Джон фон Нейман (1903-1957) Рис. 4. Сергей Александрович Лебедев (1902-1974)

В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот “мир” был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители – США и Япония – и сегодня разрабатывают и производят в режиме секретности).

Первая отечественная ЭВМ – МЭСМ (“малая электронно-счетная машина”) -была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники, впоследствии академика, лауреата государственных премий, руководившего созданием многих отечественных ЭВМ. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 (“большая электронно-счетная машина, 6-я модель”), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий – “Минск”, “Урал”, М-20, “Мир” и другие, созданные под руководством И.С.Брука и М.А.Карцева, Б.И.Рамеева, В.М.Глушкова, Ю.А.Базилевского и других отечественных конструкторов и теоретиков информатики.исторического развития . ... терминатор 10 + Т Р террор 6 + Т А техника 7 + Т М технократизм 12 + Т Я технофобия... Филиппов Ф.Р. От поколения к поколению : социология и...

  • Современные информационные технологии (2)

    Лекция >> Информатика, программирование

    ... Развитие вычислительной техники В развитии вычислительной техники можно выделить предысторию и четыре поколения электронных вычислительных ... перспектив и возможностей дальнейшего развития ... ЭВМ вычислительных центров была первой исторически ... История развития ...

  • Экономика и управление в современной электроэнергетике России

    Книга >> Экономическая теория

    ... история развития паротурбинной техники для АЭС - это история ... обусловленные историческими , политическими... приведем краткую справку о... развития электроэнергетики 5.7.1. Разработка перспектив развития ... вычислительной техники . ... нового поколения осуществляется... ЭВМ , ...

  • Кантарович

    Закон >> Исторические личности

    ... справку ... главных помощников первой поколения -- В.А.Залгаллера... отчасти историческому недоразумению... современную историю , ... для ЭВМ , ... КРАТКОЕ ЖИЗНЕОПИСАНИЕ... развитии вычислительной техники . Он руководил конструированием новых вычислительных ... перспектив экономики...

  • История развития средств инструментального счета позволяет лучше понять действие современных вычислительных машин. Как говорил Лейбниц: "Кто хочет ограничиться настоящим без знания прошлого, тот никогда не поймет настоящего." Поэтому изучение истории развития ВТ является важной составной частью информатики.

    Люди с древних времен использовали для счета различные приспособления. Первым таким "приспособлением" были собственные пальцы. Полное описание пальцевого счета составил в средневековой Европе ирландский монах Беда Достопочтенный (7 век н.э.). Различные приемы пальцевого счета использовались до 18 века.

    В качестве средств инструментального счета использовались веревки с узелками.

    Наиболее широкое распространение в древности получил абак, сведения о котором известны с V в до н.э. Числа в нем представлялись камешками, раскладываемые по столбцам. В древнем Риме камешки обозначались словом Calculus, отсюда произошли слова, обозначающие счет (английское calculate – считать).

    Счеты, широко использовавшиеся на Руси, по принципу действия похожи на абак.

    Необходимость использования различных устройств для счета объяснялись тем, что письменный счет был затруднен. Во-первых, это было связанно со сложной системой записи чисел, во-вторых, писать умели немногие, в-третьих, средства для записи (пергамент) были очень дороги. С распространением арабских цифр и изобретением бумаги (12-13 век) стал широко развиваться письменный счет, и абак стал не нужен.

    Первым устройством, механизирующий счет в привычном для нас понимании, стала счетная машинка, построенная в 1642 году французским ученым Блезом Паскалем. Она содержала набор вертикально расположенных колес с нанесенными на них цифрами 0-9. Если такое колесо совершало полный оборот, оно сцеплялось с соседним колесом и проворачивало его одно деление, обеспечивая перенос из одного разряда в другой. Такая машина могла складывать и вычитать числа и использовалась в конторе отца Паскаля для подсчета сумм собираемых налогов.

    Различные проекты и даже действующие образы механических счетных машин создавались и до машины Паскаля, но именно машина Паскаля получила широкую известность. Паскаль взял патент на свою машину, продал несколько десятков образцов; его машиной интересовались вельможи и даже короли; например, одна из машин была подарена шведской королеве Христине.

    В 1673г. немецкий философ и математик Готфрид Лейбниц создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Эта машина стала основой массовых счетных приборов - арифмометров. Выпуск механических счетных машин был налажен в США в 1887, в России в 1894. Но эти машины были ручными, то есть требовали постоянного участия человека. Они не автоматизировали, а лишь механизировала счет.

    Большое значение в истории вычислительной техники занимают попытки "заставить" технические устройства выполнять какие-либо действия без участия человека, автоматически.

    Большое развитие такие механические автоматы, построенные на основе часовых механизмов, получили в 17-18 веках. Особенно были известны автоматы французского механизма Жака де Вокансона, среди которых была игрушка-флейтист, внешне выглядевшая как обычный человек. Но это были всего лишь игрушки.

    Внедрение автоматизации в промышленное производство связывается с именем французского инженера Жаккара, который изобрел устройство управления ткацким станком на основе перфокарт – картонок с отверстиями. По-разному пробивая отверстия на перфокартах, можно было получать на станках ткани с разным переплетением нитей.

    Отцом вычислительной техники считается английский ученый 19 века Чарльз Бэббидж, который впервые предпринял попытку построить счетную машину, работающую по программе. Машина предназначалась для помощи Британском морскому ведомству в составлении мореходных таблиц. Бэббидж считал, что машина должна иметь устройство, где будут храниться числа, предназначенные для вычислений ("память"). Одновременно там же должны находиться команды о том, что с этими числами делать ("принцип хранимой программы"). Для выполнения операций над числами в машине должно быть специальное устройство, которое Беббидж назвал "мельницей", а в современных компьютерах ему соответствует АЛУ. Вводиться в машину числа должны были вручную, а выводиться на печатающее устройство ("устройства ввода/вывода"). И наконец, должно было быть устройство, управляющее работой всей машины ("УУ"). Машина Бэббиджа была механической и работала с числами, представленными в десятичной системе.

    Научные идеи Беббиджа увлекли дочь знаменитого английского поэта Джорджа Байрона – леди Аду Лавлейс. Она составила программы, по которым машина могла бы производить сложные математические расчеты. Многими понятиями, введенными Адой Лавлейс в описании тех первых в мире программ, в частности, понятием "цикл", широко пользуются современные программисты.

    Следующий важный шаг на пути автоматизации вычислений сделал примерно через 20 лет после смерти Беббиджа американец Герман Холлерит, который изобрел электромеханическую машину для вычислений с помощью перфокарт. Машина использовалась для обработки данных переписи населения. На перфокартах вручную пробивались отверстия в зависимости от ответов на вопросы переписи; сортировальная машина позволяла распределять карты на группы в зависимости от места пробитых отверстий, а табулятор подсчитывал число карт в каждой группе. Благодаря этой машине обработку результатов переписи населения Соединенных Штатов Америки 1890г удалось провести втрое быстрее предыдущей.

    В 1944 году в США под руководством Говарда Айкина была построена электромеханическая вычислительная машинка, известная как "Марк–1 ", а затем и "Марк–2 ". Эта машина была основана на реле. Поскольку реле имеют два устойчивых состояния, а идея отказаться от десятичной системы еще не приходила в голову конструкторам, то числа представлялись в двоично-десятичной системе: каждая десятичная цифра представлялась четырьмя двоичными и хранилась в группе их четырех реле. Скорость работы составляла около 4х операций в секунду. Тогда же было создано еще несколько релейных машин, в том числе советская релейная вычислительная машина РВМ–1, сконструированная в 1956г Бессоновым и успешно работавшая до 1966г.

    За точку отсчета эры ЭВМ обычно принимают 15 февраля 1946г, когда ученые Пенсильванского университета ввели в строй первый в мире компьютер на электронных лампах – ЭНИАК. Первым применением ЭНИАК было решение задач для сверхсекретного проекта атомной бомбы, да и затем он использовался в основном в военных целях. В ЭНИАК не существовало программы, хранимой в памяти; "программирование" осуществлялось с помощью установки проводов-перемычек между отдельными элементами.

    С 1944 года в работе над созданием ЭВМ принимал участие Джон фон Нейман. В 1946 году была опубликована его статья, в которой были сформулировали два важнейших принципа, лежащие в основы всех современных ЭВМ: использование двоичной системы счисления и принцип хранимой программы.

    Появились ЭВМ и в СССР. В 1952 г под руководством академика Лебедева была создана самая быстродействующая ЭВМ в Европе – БЭСМ, в 1953г начат выпуск серийной ЭВМ "Стрела". Серийные советские машины были на уровне лучших мировых образцов.

    Началось бурное развитие ВТ.

    Первая вычислительная машина на электронных лампах (ЭНИАК) насчитывала около 20 тыс. электронных ламп, размещалась в огромном зале, потребляла десятки кВт электроэнергии и была очень ненадежна в работе – фактически работала только небольшие промежутки времени между ремонтами.

    С тех пор развитие ВТ прошло огромный путь. Выделяют несколько поколений ЭВМ. Под поколением понимается определенный этап развития аппаратуры, характеризующийся ее параметрами, технологией изготовления составных частей и т.д.

    1 поколение – начало 50х годов (БЭСМ, Стрела, Урал). Основаны на электронных лампах. Большая потребляемая мощность, малая надежность, низкое быстродействие (2000 оп/с), малый объем памяти (несколько килобайт); отсутствовали средства организации вычислительных процессов, оператор работал непосредственно за пультом.

    2 поколение – конец 50х годов (Минск – 2, Раздан, Наири). Полупроводниковые элементы, печатный монтаж, быстродействие (50-60 тыс. оп/с); появление внешних магнитных запоминающих устройств, появились примитивные операционные системы и трансляторы с алгоритмических языков.

    3 поколение – середина 60х годов. Построены на основы интегральных микросхем, использовались стандартные электронные блоки; быстродействие до 1,5 млн. оп/с; появились развитые программные средства.

    4 поколение – построены на основе микропроцессоров. Компьютеры специализируются, появляются их различные типы: супер ЭВМ – для решения очень сложных вычислительных задач; мэйнфреймы – для решения экономических и расчетных задач в рамках предприятия, ПК – для индивидуальной работы пользования. Сейчас ПК занимают преобладающую часть рынка компьютеров, а их возможности в миллионы раз превосходят возможности первых ЭВМ.

    Первый ПК Altair 8800 появился в 1975г в фирме MITS, однако возможности его были весьма ограничены, и коренного перелома в использовании компьютеров не произошло. Революция в индустрии ПК была совершена двумя другими фирмами – IBM и Apple Computer, соперничество которых способствовало бурному развитию высоких технологий, улучшению технических и пользовательских качеств ПК. В результате этого состязания компьютер превратился в неотъемлемую часть повседневной жизни.

    История фирмы Apple начался в 1976г, когда в гараже города Лос–Альмос штата Калифорния Стивен Джобс и Стивен Возняк (обоим было чуть за 20) собрали свой первый ПК. Однако настоящий успех пришел к фирме благодаря выпуску компьютера Apple–II, который был создан на основе микропроцессора фирмы Motorolla, внешним видом напоминал обычный бытовой прибор, а по цене был доступен рядовому американцу.

    Фирма IBM родилась в 1914 году и специализировалась на выпуске канцелярских товаров пишущих машинок. В пятидесятые годы основатель фирмы Томас Уотсон переориентировал ее на выпуск больших ЭВМ. В области ПК фирма вначале заняла выжидательную позицию. Бешенный успех Apple насторожил гиганта, и в кратчайшие сроки был создан первый IBM PC, представленный в 1981г. Используя свои огромные ресурсы, корпорация буквально наводнила рынок своими ПК, ориентируясь на самую емкую сферу их применения – деловой мир. IBM PC был основан на новейшем микропроцессоре фирмами Intel, позволившими значительно расширить возможности нового компьютера.

    Чтобы завоевать рынок, IBM впервые использовала принцип "открытой архитектуры". IBM PC не изготавливался как единое целое, а собирался из отдельных модулей. Любая фирма могла разработать устройство, совместимое с IBM PC. Это принесло IBM огромный коммерческий успех. Но в то же время на рынке стало появляться множество компьютеров – точных копий IBM PC – так называемых клонов. На появление "двойников" фирма ответила резким снижением цен и появлении новых моделей.

    В ответ на это фирма Apple создала Apple Macintosh, снабженный мышкой и имеющий высококачественный графический дисплей, а также впервые оснащенный микрофоном и генератором звука. А главное – имелось удобное и легкое в освещении ПО. Мас поступил в продажу и имел определенный успех, но вернуть лидерство на рынке ПК фирме Apple не удалось.

    Стремясь приблизиться по удобству использования к компьютерам Apple, фирма IBM стимулировала разработку современного ПО. Огромную роль здесь сыграло создание фирмой Microsoft OC Windows"95.

    С тех пор программное обеспечение становиться все более удобным и понятием. ПК оснащаются новыми устройствами и из прибора для профессиональной деятельности становятся "центрами цифровых развлечений", объединяя в себе функции различных бытовых приборов.

    Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

    Основные этапы развития вычислительной техники

    Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

    • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
    • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
    • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
    • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

    Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

    Самые первые приспособления для счёта

    Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

    С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

    Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

    В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

    Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

    В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

    Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

    Первые механические счётные устройства

    В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

    Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

    В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

    В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

    Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

    Разработка первых аналогов компьютера

    В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

    В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

    Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

    Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

    В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

    Начало компьютерной эры

    Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

    Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

    Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

    В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

    В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

    Разработка архитектуры

    В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

    Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

    Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

    В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

    В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

    Транзисторы. Выпуск первых серийных компьютеров

    Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

    В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

    В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

    Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

    Появление интегральных микросхем

    В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

    В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

    В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

    В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

    В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

    Персональные компьютеры

    После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

    Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

    Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

    Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

    В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

    ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

    Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

    Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

    Классы вычислительной техники

    Существуют различные варианты классификации ЭВМ.

    Так, по назначению компьютеры делятся:

    • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
    • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
    • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

    По размерам и производительной мощности современная электронно-вычислительная техника делится:

    • на сверхбольшие (суперкомпьютеры);
    • большие компьютеры;
    • малые компьютеры;
    • сверхмалые (микрокомпьютеры).

    Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

    Глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

    Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: абак (счёты), логарифмическая линейка , механический арифмометр, электронный компьютер . Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

    Ранние приспособления и устройства для счёта

    Человечество научилось пользоваться простейшими счётными приспособлениями тысячи лет назад. Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле. Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчёта количества его составляющих. Для этих целей использовались простейшие балансирные весы , которые стали, таким образом, одним из первых устройств для количественного определения массы .

    Принцип эквивалентности широко использовался и в другом, знакомом для многих, простейшем счётном устройств Абак или Счёты. Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

    Сравнительно сложным приспособлением для счёта могли быть чётки, применяемые в практике многих религий. Верующий как на счётах отсчитывал на зёрнах чёток число произнесённых молитв, а при проходе полного круга чёток передвигал на отдельном хвостике особые зёрна-счётчики, означающие число отсчитанных кругов.

    С изобретением зубчатых колёс появились и гораздо более сложные устройства выполнения расчётов. Антикитерский механизм , обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 году до н. э. (по другим источникам в или даже 87 году до н. э.), даже умел моделировать движение планет. Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и т. п. Вычисления выполнялись за счёт соединения более 30 бронзовых колёс и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к XVI веку. Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

    «Считающие часы» Вильгельма Шиккарда

    За этим последовали машины Блеза Паскаля («Паскалина », 1642 г.) и Готфрида Вильгельма Лейбница .

    ANITA Mark VIII, 1961 год

    В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш»), Пензе и Москве .

    Появление аналоговых вычислителей в предвоенные годы

    Основная статья: История аналоговых вычислительных машин

    Дифференциальный анализатор, Кембридж, 1938 год

    Первые электромеханические цифровые компьютеры

    Z-серия Конрада Цузе

    Репродукция компьютера Zuse Z1 в Музее техники, Берлин

    Цузе и его компанией были построены и другие компьютеры, название каждого из которых начиналось с заглавной буквы Z. Наиболее известны машины Z11, продававшийся предприятиям оптической промышленности и университетам, и Z22 - первый компьютер с памятью на магнитных носителях.

    Британский Colossus

    В октябре 1947 года директора компании Lyons & Company, британской компании, владеющей сетью магазинов и ресторанов, решили принять активное участие в развитии коммерческой разработки компьютеров. Компьютер LEO I начал работать в 1951 году и впервые в мире стал регулярно использоваться для рутинной офисной работы.

    Машина Манчестерского университета стала прототипом для Ferranti Mark I. Первая такая машина была доставлена в университет в феврале 1951 года, и, по крайней мере, девять других были проданы между 1951 и 1957 годами.

    Компьютер второго поколения IBM 1401, выпускавшийся в начале 1960-х, занял около трети мирового рынка компьютеров, было продано более 10 000 таких машин.

    Применение полупроводников позволило улучшить не только центральный процессор , но и периферийные устройства. Второе поколения устройств хранения данных позволяло сохранять уже десятки миллионов символов и цифр. Появилось разделение на жёстко закреплённые (fixed ) устройства хранения, связанные с процессором высокоскоростным каналом передачи данных, и сменные (removable ) устройства. Замена кассеты дисков в сменном устройстве требовала лишь несколько секунд. Хотя ёмкость сменных носителей была обычно ниже, но их заменяемость давала возможность сохранения практически неограниченного объёма данных. Магнитная лента обычно применялось для архивирования данных, поскольку предоставляла больший объём при меньшей стоимости.

    Во многих машинах второго поколения функции общения с периферийными устройствами делегировались специализированным сопроцессорам . Например, в то время как периферийный процессор выполняет чтение или пробивку перфокарт, основной процессор выполняет вычисления или ветвления по программе. Одна шина данных переносит данные между памятью и процессором в ходе цикла выборки и исполнения инструкций, и обычно другие шины данных обслуживают периферийные устройства. На PDP-1 цикл обращения к памяти занимал 5 микросекунд; большинство инструкций требовали 10 микросекунд: 5 на выборку инструкции и ещё 5 на выборку операнда.

    Муниципальное образовательное учреждение средняя общеобразовательная школа №3 Карасукского района

    Тема: История развития вычислительной техники.

    Составил:

    Ученик МОУСОШ №3

    Кочетов Егор Павлович

    Руководитель и консультант:

    Сердюков Валентин Иванович,

    учитель информатики МОУСОШ №3

    Карасук 2008г

    Актуальность

    Введение

    Первые шаги в развитии счетных устройств

    Счётные устройства 17 века

    Счётные устройства 18 века

    Счётные устройства 19 века

    Развитие вычислительной техники в начале 20 века

    Появление и развитие вычислительной техники в 40-х годах 20 века

    Развитие вычислительной техники в 50-х годах 20 века

    Развитие вычислительной техники в 60-х годах 20 века

    Развитие вычислительной техники в 70-х годах 20 века

    Развитие вычислительной техники в 80-х годах 20 века

    Развитие вычислительной техники в 90-х годах 20 века

    Роль вычислительной техники в жизни человека

    Мои исследования

    Заключение

    Список литературы

    Актуальность

    Математика и информатика используются во всех сферах современного информационного общества. Современное производство, компьютеризация общества, внедрение современных информационных технологий требуют математической и информационной грамотности и компетентности. Однако на сегодняшний день в школьном курсе информатики и ИКТ зачастую предлагается односторонний образовательный подход, не позволяющий должным образом повысить уровень знаний из-за отсутствия в нём математической логики, необходимой для полного усвоения материала. Кроме того, отсутствие стимуляции творческого потенциала учащихся негативным образом отражается на мотивации к обучению, и как следствие, на конечном уровне умений, знаний и навыков. Как можно изучать предмет не зная его истории. Данный материал можно использовать на уроках истории, математики и информатики.

    В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов люде.

    Введение

    Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счётные приспособления. Особое место среди них занял АБАК, получивший в древнем мире широкое распространение. Затем спустя годы развития человека появились первые электронные вычислительные машины (ЭВМ). Они не только ускорили вычислительную работу, но и дали толчок человеку для создания новых технологий. Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и мало известным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения знаменательном году ещё почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до учёных и инженеров. В конце XX века невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений. В данном реферате мы рассмотрим историю развития вычислительной техники, а также краткий обзор о возможностях применения современных вычислительных систем и дальнейшие тенденции развития персональных компьютеров.

    Первые шаги в развитии счетных устройств

    История счётных устройств насчитывает много веков. Древнейшим счетным инструментом, который сама природа предоставила в распоряжение человека, была его собственная рука. Для облегчения счета люди стали использовать пальцы сначала одной руки, затем обеих, а в некоторых племенах и пальцы ног. В XVI веке приемы счета на пальцах описывались в учебниках.

    Следующим шагом в развитии счета стало использование камешков или других предметов, а для запоминания чисел - зарубок на костях животных, узелков на веревках. Обнаруженная в раскопках так называемая "вестоницкая кость" с зарубками, позволяет историкам предположить, что уже тогда, 30 тыс. лет до н.э., наши предки были знакомы с зачатками счета:


    Раннему развитию письменного счета препятствовала сложность арифметических действий при существовавших в то время перемножениях чисел. Кроме того, писать умели немногие и отсутствовал учебный материал для письма - пергамент начал производиться примерно со II века до н.э., папирус был слишком дорог, а глиняные таблички неудобны в использовании.

    Эти обстоятельства объясняют появление специального счетного прибора - абака. К V веку до н.э. абак получил широкое распространение в Египте, Греции, Риме. Он представлял собой доску с желобками, в которых по позиционному принципу размещали какие-нибудь предметы - камешки, косточки.


    Подобный счетам инструмент был известен у всех народов. Древнегреческий абак (доска или "саламинская доска" по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде.

    Римляне усовершенствовали абак, перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками. Позднее, Около 500 г. н.э., абак был усовершенствован и на свет появились счёты- устройства, состоящего из набора костяшек, нанизанных на стержни. Китайские счеты суан-пан состояли из деревянной рамки, разделнной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки с числами. У китайцев в основе счета лежала не десятка, а пятерка.


    Она разделена на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части - по две. Таким образом, для того чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, и затем прибавляли одну в разряд единиц.


    У японцев это же устройство для счета носило название серобян:


    На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с XV века получил распространение "дощаный счет", который почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.


    Примерно в VI в. н.э. в Индии сформировались весьма совершенные способы записи чисел и правила выполнения арифметических операций, называемые сейчас десятичной системой счисления.При записи числа, в котором отсутствует какой-либо разряд (например, 101 или 1204), индийцы вместо названия цифры говорили слово "пусто". При записи на месте "пустого" разряда ставили точку, а позднее рисовали кружок. Такой кружок назывался "сунья" - на языке хинди это означало "пустое место". Арабские математики перевели это слово по смыслу на свой язык - они говорили "сифр". Современное слово "нуль" родилось сравнительно недавно - позднее, чем "цифра". Оно происходит от латинского слова "nihil" - "никакая". Приблизительно в 850 году н.э. арабский ученый математик Мухаммед бен Муса ал-Хорезм (из города Хорезма на реке Аму-Дарья) написал книгу об общих правилах решения арифметических задач при помощи уравнений. Она называлась "Китаб ал-Джебр". Эта книга дала имя науке алгебре. Очень большую роль сыграла еще одна книга ал-Хорезми, в которой он подробно описал индийскую арифметику. Триста лет спустя (в 1120 году) эту книгу перевели на латинский язык, и она стала первым учебником "индийской" (то есть нашей современной) арифметики для всех европейских городов.


    Мухаммеду бен Муса ал-Хорезму мы обязаны появлению термина "алгоритм".

    В конце XV века Леонардо да Винчи(1452-1519) создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Но рукописи да Винчи обнаружили лишь в 1967г., поэтому биография механических устройств ведется от суммирующей машины Паскаля.По его чертежам в наши дни американская фирма по производству компьютеров в целях рекламы построила работоспособную машину.

    Счётные устройства 17 века


    В 1614 году шотландский математик Джон Непер (John Naiper, 1550-1617) изобрел таблицы логарифмов. Принцип их заключается в том, что каждому числу соответствует специальное число - логарифм - показатель степени, в которую нужно возвести число (основание логарифма), чтобы получить заданное число. Таким способом можно выразить любое число. Логарифмы очень упрощают деление и умножение. Для умножения двух чисел достаточно сложить их логарифмы. Благодаря данному свойству сложная операция умножения сводится к простой операции сложения. Для упрощения были составлены таблицы логарифмов, которые позже были как бы встроены в устройство, позволяющее значительно ускорить процесс вычисления, - логарифмическую линейку.


    Непер предложил в 1617 году другой (не логарифмический) способ перемножения чисел. Инструмент, получивший название палочки (или костяшки) Непера, состоял из тонких пластин, или блоков. Каждая сторона блока несет числа, образующие математическую прогрессию.


    Манипуляции с блоками позволяют извлекать квадратные и кубические корни, а также умножать и делить большие числа.


    Вильгельм Шиккард

    В 1623 г. Вильгельм Шиккард (Wilhelm Schickard) - востоковед и математик, профессор Тюбинского университета - в письмах своему другу Иогану Кеплеру описал устройство "часов для счета" - счетной машины с устройством установки чисел и валиками с движком и окном для считывания результата. Эта машина могла только складывать и вычитать (в некоторых источниках говорится, что эта машина могла еще умножать и делить). Это была первая механическая машина. В наше время по его описанию построена ее модель:

    Блез Паскаль


    В 1642 г. французский математик Блез Паскаль (Blaise Pascal, 1623-1662) сконструировал счетное устройство, чтобы облегчить труд своего отца - налогового инспектора. Это устройство позволяло суммировать десятичные числа. Внешне оно представляло собой ящик с многочисленными шестеренками.


    Основой суммирующей машины стал счетчик-регистратор, или счетная шестерня. Она имела десять выступов, на каждом из которых были нанесены цифры. Для передачи десятков на шестерне располагался один удлиненный зуб, зацеплявший и поворачивающий промежуточную шестерню, которая передавала вращение шестерне десятков. Дополнительная шестерня была необходима для того, чтобы обе счетные шестерни - единиц и десятков - вращались в одном направлении. Счетная шестерня при помощи храпового механизма (передающего прямое движение и не передающего обратного) соединялись с рычагом. Отклонение рычага на тот или иной угол позволяло вводить в счетчик однозначные числа и суммировать их. В машине Паскаля храповой привод был присоединен ко всем счетным шестерням, что позволяло суммировать и многозначные числа.

    В 1642 г. англичане Роберт Биссакар, а в 1657 году - независимо от него - С.Патридж разработали прямоугольную логарифмическую линейку, конструкция которой в основном сохранилась до наших дней.


    В 1673 г. Немецкий философ, математик, физик Готфрид Вильгельм Лейбниц(Gottfried Wilhelm Leibniz, 1646-1716) создал "ступенчатый вычислитель" - счетную машину, позволяющую складывать, вычитать, умножать, делить, извлекать квадратные корни, при этом использовалась двоичная система счисления.

    Это был более совершенный прибор, в котором использовалась движущаяся часть (прообраз каретки) и ручка, с помощью которой оператор вращал колесо. Изделие Лейбница постигла печальная судьба предшественников: если им кто-то и пользовался, то только домашние Лейбница и друзья его семьи, поскольку время массового спроса на подобные механизмы еще не пришло.

    Машина являлась прототипом арифмометра, использующегося с 1820 года до 60-х годов ХХ века.

    Счетные устройства 18 века.


    В 1700 году Шарль Перро издал "Сборник большого числа машин собственного изобретения Клода Перро", в котором среди изобретений Клода Перро (брата Шарля Перро) числится суммирующая машина, в которой взамен зубчатых колес используются зубчатые рейки. Машина получила название "Рабдологический абак". Названо это устройство так потому, что древние называли абаком небольшую доску, на которой написаны цифры, а Рабдологией - науку выполнения

    арифметических операций с помощью маленьких палочек с цифрами.


    В 1703 г. Готфрид Вильгельм Лейбниц написал трактат "Expication de l"Arithmetique Binary" - об использовании двоичной системы счисления в вычислительных машинах. Первые его работы по двоичной арифметике относятся к 1679 году.

    Член Лондонского королевского общества немецкий математик, физик, астроном Христиан Людвиг Герстен в 1723 году изобрел арифметическую машину, а двумя годами позже ее изготовил. Машина Герстена замечательна тем, что в ней впервые применено устройство для подсчета частного и числа последовательных операций сложения, необходимых при умножении чисел, а также предусмотрена возможность контроля за правильностью ввода (установки) второго слагаемого, что снижает вероятность субъективной ошибки, связанной с утомлением вычислителя.

    В 1727 году Джакоб Леопольд (Jacob Leupold) создал счетную машину, в которой использовался принцип машины Лейбница.

    В отчете комиссии Парижской академии наук, опубликованном в 1751 году в "Журнале ученых", встречаются замечательные строки: "Виденных нами результатов метода г-на Перейры вполне достаточно, чтобы еще раз подтвердить мнение... что такой метод обучения глухонемых в высшей степени практичен и что лицо, которое применяло его с таким успехом, достойно похвалы и поощрения...Говоря о прогрессе, который сделал ученик г-на Перейры за совсем небольшое время в знании чисел, мы должны добавить, что г-н Перейра использовал Арифметическую машину, которую сам изобрел". Эта арифметическая машина описана в "Журнале ученых", но, к сожалению, в журнале не приведены чертежи. В этой счетной машине использованы кое-какие идеи, заимствованные у Паскаля и Перро, но в общем она представляла собой совершенно оригинальную конструкцию. От известных машин она отличалась тем, что ее счетные колеса располагались не на параллельных осях, а на единственной оси, проходившей через всю машину. Это новшество, делавшее конструкцию более компактной, впоследствии широко использовалось другими изобретателями - Фельтом и Однером.

    Во второй половине XVII века (не позднее 1770 года) суммирующая машина была создана в городе Несвиже. Надпись, сделанная на этой машине, гласит, что она "изобретена и изготовлена евреем Евной Якобсоном, часовым мастером и механиком в городе Несвиже в Литве, ""Минское воеводство". Эта машина в настоящее время находится в коллекции научных инструментов Музея им.М.В.Ломоносова (Санкт-Петербург). Интересной особенностью машины Якобсона было особое устройство, которое позволяло автоматически подсчитывать число произведенных вычитаний, иначе говоря - определять частное. Наличие этого устройства, остроумно решенная проблема ввода чисел, возможность фиксации промежуточных результатов - все это позволяет считать "часового мастера из Несвижа" выдающимся конструктором счетной техники.


    В 1774 г.сельский пастор Филипп Маттеос Хан разработал первую действующую счетную машину. Он сумел построить и, самое невероятное, продать небольшое количество счетных машин.

    В 1775 г. в Англии графом Стейнхопом было создано счетное устройство, в котором не были реализованы новые механические системы, но это устройство имело большую надежность в работе.


    Счетные устройства 19 века.

    В 1804 г.Французский изобретатель Жозеф Мари Жаккар (Joseph-Marie Jacquard, 1752-1834) придумал способ автоматического контроля за нитью при работе на ткацком станке. Способ заключался в использовании специальных карточек с просверленными в нужных местах (в зависимости от узора, который предполагалось нанести на ткань) отверстиями. Таким образом он сконструировал прядильную машину, работу которой можно было программировать с помощью специальных карт. Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Переходя к новому рисунку, оператор просто заменял одну колоду перфокарт другой. Создание ткацкого станка, управляемого картами с пробитыми на них отверстиями и соединенными друг с другом в виде ленты, относится к одному из ключевых открытий, обусловивших дальнейшее развитие вычислительной техники.

    Чарльз Ксавьер Томас

    Чарльз Ксавьер Томас(1785-1870) в 1820г. создал первый механический калькулятор, который мог не только складывать и умножать, но и вычитать и делить. Бурное развитие механических калькуляторов привело к тому, что к 1890 году добавился ряд полезных функций: запоминание промежуточных результатов с использованием их в последующих операциях, печать результата и т.п. Создание недорогих, надежных машин позволило использовать эти машины для коммерческих целей и научных расчетов.

    Чарльз Бэббидж

    В 1822г. английский математик Чарльз Бэббидж (Charles Babbage, 1792-1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати.

    Первая спроектированная Бэббиджем машина, Разностная машина, работала на паровом двигателе. Она высчитывала таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.

    Ада Лавлейс

    Одновременно с английским ученым работала леди Ада Лавлейс(Ada Byron, Countess of Lovelace, 1815-1852). Она разработала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

    Аналитическую машину Бэббиджа построили энтузиасты из Лондонского музея науки. Она состоит из четырех тысяч железных, бронзовых и стальных деталей и весит три тонны. Правда, пользоваться ею очень тяжело - при каждом вычислении приходится несколько сотен (а то и тысяч) раз крутить ручку автомата.

    Числа записываются (набираются) на дисках, расположенных по вертикали и установленных в положения от 0 до 9. Двигатель приводится в действие последовательностью перфокарт, содержащих инструкции (программу).

    Первый телеграф

    Первый электрический телеграф создали в 1937 году английские изобретатели Уильям Кук (1806-1879) и Чарльз Уитстон (1802-1875). Электрический ток по проводам посылался на приемник. Сигналы приводили в действие стрелки на приемнике, которые указывали на разные буквы и таким образом передавали сообщения.

    Американский художник Сэмюэл Морзе (1791-1872) изобрел новый телеграфный код, заменивший код Кука и Уитстона. Он разработал для каждой буквы знаки из точек и тире. Морзе устроил демонстрацию своего кода, проложив телеграфный провод длиной 6 км от Балтимора до Вашингтона и передавая по нему новости о президентских выборах.

    Позднее (в 1858 году) Чарлз Уитстон создал систему, в которой оператор с помощью кода Морзе набивал сообщения на длинной бумажной ленте, поступавшей в телеграфный аппарат. На другом конце провода самописец набивал принятое сообщение на другую бумажную ленту. Производительность телеграфистов повышается в десять раз - теперь сообщения пересылаются со скоростью сто слов в минуту.

    В 1846 году появился счислитель Куммера, который серийно выпускался более 100 лет - до семидесятых годов двадцатого века.Калькуляторы сейчас стали неотъемлемым атрибутом современной жизни. А вот когда не было калькуляторов, в ходу был счислитель Куммера, по прихоти конструкторов превращавшийся потом в "Аддиатор", "Продукс", "Арифметическую линейку" или "Прогресс". Этот чудесный прибор, созданный в середине 19-го века, по замыслу его изготовителя мог быть изготовлен размером с игральную карту, а потому легко умещался в кармане. Прибор Куммера, петербургского учителя музыки, выделялся среди ранее изобретенных своей портативностью, которая стала его важнейшим преимуществом. Изобретение Куммера имело вид прямоугольной доски с фигурными рейками. Сложение и вычитание производилось посредством простейшего передвижения реек. Интересно, что счислитель Куммера, представленный в 1946 году Петербургской академии наук, был ориентирован на денежные подсчеты.

    В России кроме прибора Слонимского и модификаций счислителя Куммера были достаточно популярны так называемые счетные бруски, изобретенные в 1881 году ученым Иоффе.

    Джордж Буль

    В 1847 г. английский математик Джордж Буль(George Boole, 1815-1864) опубликовал работу "Математический анализ логики". Так появился новый раздел математики. Его назвали Булева алгебра. Каждая величина в ней может принимать только одно из двух значений: истина или ложь, 1 или 0. Эта алгебра очень пригодилась создателям современных компьютеров. Ведь компьютер понимает только два символа: 0 и 1. Его считают основоположником современной математической логики.

    1855 г. братья Джорж и Эдвард Шутц (George & Edvard Scheutz) из Стокгольма построили первый механический компьютер, используя работы Ч.Бэббиджа.

    В 1867 г.Буняковский изобрел самосчеты, которые базировались на принципе связанных цифровых колес (шестерни Паскаля).

    В 1878 г. английский ученый Джозеф Сван (1828-1914) изобрел электрическую лампочку. Это была стеклянная колба, внутри которой находилась угольная нить накаливания. Чтобы нить не перегорала, Сван удалил из колбы воздух.

    В следующем году американский изобретатель Томас Эдисон (1847-1931) также изобрел лампочку. В 1880 году Эдисон начал выпуск безопасных лампочек, продавая их по 2,5 доллара. Впоследствии Эдисон и Сван создали совместную компанию "Эдисон энд Сван Юнайтед Электрик Лайт компани".

    В 1883 году, экспериментируя с лампой, Эдисон вводит в вакуумный баллон платиновый электрод, подает напряжение и, к своему удивлению, обнаруживает, что между электродом и угольной нитью протекает ток. Поскольку в тот момент главной целью Эдисона было продление срока службы лампы накаливания, этот результат его заинтересовал мало, но патент предприимчивый американец все-таки получил. Явление, известное нам как термоэлектронная эмиссия, тогда получило название "эффект Эдисона" и на какое-то время забылось.

    Вильгодт Теофилович Однер

    В 1880г. Вильгодт Теофилович Однер, швед по национальности, живший в Санкт-Петербурге сконструировал арифмометр. надо признать, что до Однера тоже были арифмометры - системы К.Томаса. Однако они отличались ненадежностью, большими габаритами и неудобством в работе.

    Над арифмометром он начал работать в 1874 году, а в 1890 году налаживает их массовый выпуск. Их модификация "Феликс" выпускалась до 50-х годов. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов (это колесо носит имя Однера) вместо ступенчатых валиков Лейбница. Оно проще валика конструктивно и имеет меньшие размеры.

    Герман Холлерит

    В 1884 г. Американский инженер Герман Холлерит (Herman Hillerith, 1860-1929) взял патент "на машину для переписи населения"(статистический табулятор). Изобретение включало перфокарту и сортировальную машину. Перфокарта Холлерита оказалась настолько удачной, что без малейших изменений просуществовала до наших дней.

    Идея наносить данные на перфокарты и затем считывать и обрабатывать их автоматически принадлежала Джону Биллингсу, а ее техническое решение принадлежит Герману Холлериту.

    Табулятор принимал карточки размером с долларовую бумажку. На карточках имелось 240 позиций (12 рядов по 20 позиций). При считывании информации с перфокарт 240 игл пронизывали эти карты. Там, где игла попадала в отверстие, она замыкала электрический контакт, в результате чего увеличивалось на единицу значение в соответствующем счетчике.

    Развитие вычислительной техники

    в начале 20 века

    1904 г. Известный русский математик, кораблестроитель, академик А.Н.Крылов предложил конструкцию машины для интегрирования обычных дифференциальных уравнений, которая была построена в 1912 году.

    Английский физик Джон Амброз Флеминг(1849-1945), изучая "эффект Эдисона", создает диод. Диоды используются для преобразования радиоволн в электросигналы, которые могут передаваться на большие расстояния.

    Через два года усилиями американского изобретателя Ли ди Фореста появляются триоды.

    1907 год. Американский инженер Дж.Пауэр сконструировал автоматический карточный перфоратор.

    Петербургский ученый Борис Розинг подает заявку на патент электронно-лучевой трубки как приемника данных.

    1918 год. Русский ученый М.А.Бонч-Бруевич и английские ученые В.Икклз и Ф.Джордан (1919) независимо друг от друга создали электронное рыле, названное англичанами триггером, которое сыграло большую роль в развитии компьютерной техники.

    В 1930г.Виннивер Буш (Vannevar Bush, 1890-1974) конструирует дифференциальный анализатор. По сути, это первая успешная попытка создать компьютер, способный выполнять громоздкие научные вычисления. Роль Буша в истории компьютерных технологий очень велика, но наиболее часто его имя всплывает в связи с пророческой статьей "As We May Think" (1945), в которой он описывает концепцию гипертекста.

    Конрад Цузе (Konrad Zuse) создал вычислительную машину Z1, которая имела клавиатуру для ввода условий задачи. По завершению вычислений результат высвечивался на панели с множеством маленьких лампочек. Общая площадь, которую занимала машина составляла 4 кв.м.

    Конрад Цузе запатентовал способ автоматических вычислений.

    Для следующей модели Z2 К.Цузе придумал очень остроумное и дешевое устройство ввода: Цузе стал кодировать инструкции для машины, пробивая отверстия в использованной 35-миллиметровой фотопленке.

    В 1838г. американский математик и инженер Клод Шеннон и русский ученый В.И.Шестаков в 1941 году показали возможность аппарата математической логики для синтеза и анализа релейно-контактных переключательных систем.

    В 1938 году в телефонной компании Bell Laboratories создали первый двоичный сумматор (электрическая схема, выполнявшая операцию двоичного сложения) - один из основных компонентов любого компьютера. Автором идеи был Джордж Стибиц(George Stibits), экспериментировавший с булевой алгеброй и различными деталями - старыми реле, батарейками, лампочками и проводками. К 1940 году родилась машина, умевшая выполнять над комплексными числами четыре действия арифметики.

    Появление и

    в 40-х годах 20 века.

    В 1941 году инженер фирмы IBM Б.Фелпс начал работу по созданию десятичных электронных счетчиков для табуляторов, а в 1942 году создал экспериментальную модель электронного множительного устройства. В 1941 году Конрад Цузе построил первый в мире действующий релейный двоичный компьютер Z3 с программным управлением.

    Одновременно с постройкой ENIAC, также в обстановке секретности, создавалась ЭВМ в Великобритании. Секретность была необходима потому, что проектировалось устройство для дешифровки кодов, которыми пользовались вооруженные силы Германии в период второй мировой войны. Математический метод дешифровки был разработан группой математиков, в число которых входил Алан Тьюринг (Alan Turing). В течение 1943 году в Лондоне была построена машина Colossus на 1500 электронных лампах. Разработчики машины - М.Ньюмен и Т.Ф.Флауэрс.

    Хотя и ENIAC, и Colossus работали на электронных лампах, они по существу копировали электромеханические машины: новое содержание (электроника) было втиснуто в старую форму (структуру доэлектронных машин).

    В 1937 году гарвардский математик Говард Эйкен (Howard Aiken) предложил проект создания большой счетной машины. Спонсировал работу президент компании IBM Томас Уотсон (Tomas Watson), который вложил в нее 500 тыс.$. Проектирование Mark-1 началось в 1939 году, строило этот компьютер нью-йоркское предприятие IBM. Компьютер содержал около 750 тыс. деталей, 3304 реле и более 800 км проводов.

    В 1944 году готовая машина была официально передана Гарвардскому университету.

    В 1944 году американский инженер Джон Эккерт(John Presper Eckert) впервые выдвинул концепцию хранимой в памяти компьютера программы.

    Эйкен, располагавший интеллектуальными ресурсами Гарварда и работоспособной машиной Mark-1, получил несколько заказов от военных. Так следующая модель - Mark-2 была заказана управлением вооружения ВМФ США. Проектирование началось в 1945 году, а постройка закончилась в 1947 году.Mark-2 представляла собой первую многозадачную машину - наличие нескольких шин позволяло одновременно передавать из одной части компьютера в другую несколько чисел.

    В 1948 году Сергеем Александровичем Лебедевым(1990-1974) и Б.И.Рамеевым был предложен первый проект отечественной цифровой электронно - вычислительной машины. Под руководством академика Лебедева С.А. и Глушкова В.М. разрабатываются отечественные ЭВМ: сначала МЭСМ- малая электронная счетная машина (1951 год, Киев), затем БЭСМ- быстродействующая электронная счетная машина (1952 год, Москва). Параллельно с ними создавались Стрела, Урал, Минск, Раздан, Наири.

    В 1949г. введена в эксплуатацию английская машина с хранимой программой - EDSAC (Electronic Delay Storage Automatic Computer) -конструктор Морис Уилкис (Maurice Wilkes) из Кембриджского университета. ЭВМ EDSAC содержала 3000 электронных ламп и в шесть раз производительнее своих предшественниц. Морис Уилкис ввел систему мнемонических обозначений для машинных команд, названную языком ассемблера.

    В 1949г. Джон Моучли (John Mauchly) создал первый интерпретатор языка программирования под названием "Short Order Code".

    Развитие компьютерной техники

    в 50-х годах 20 века.

    В 1951 году была закончена работа по созданию UNIVAC (Universal Automatic Computer). Первый образец машины UNIVAC-1 был построен для бюро переписи США. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана была на базе ЭВМ ENIAC и EDVAC.Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство, емкостью 1000 двенадцатиразрядных десятичных чисел, было выполнено на 100 ртутных линиях задержки.

    Этот компьютер интересен тем, что он был нацелен на сравнительно массовое производство без изменения архитектуры и особое внимание было уделено периферийной части (средствам ввода-вывода).

    Джей Форрестер запатентовал память на магнитных сердечниках. Впервые такая память применена на машине Whirlwind-1. Она представляла собой два куба с 32х32х17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля четности.

    В этой машине была впервые использована универсальная неспециализированная шина (взаимосвязи между различными устройствами компьютера становятся гибкими) и в качестве систем ввода-вывода использовались два устройства: электронно-лучевая трубка Вильямса и пишущая машинка с перфолентой (флексорайтер).

    "Традис", выпущенный в 1955г. - первый транзисторный компьютер фирмы "Белл телефон лабораторис" - содержал 800 транзисторов, каждый из которых был заключен в отдельный корпус.

    В 1957г. в модели IBM 350 RAMAC впервые появилась память на дисках (алюминиевые намагниченные диски диаметром 61 см).

    Г.Саймон, А.Ньюэлл, Дж.Шоу создали GPS - универсальный решатель задач.

    В 1958г. Джек Килби из Texas Instruments и Роберт Нойс из Fairchild Semiconductor независимо друг от друга изобретают интегральную схему.

    1955-1959 гг. Российские ученые А.А. Ляпунов, С.С. Камынин, Э.З. Любимский, А.П. Ершов, Л.Н. Королев, В.М. Курочкин, М.Р. Шура-Бура и др. создали "программирующие программы" - прообразы трансляторов. В.В. Мартынюк создал систему символьного кодирования - средство ускорения разработки и отладки программ.

    1955-1959 гг. Заложен фундамент теории программирования (А.А. Ляпунов, Ю.И. Янов, А.А. Марков, Л.А. Калужин) и численных методов (В.М. Глушков, А.А. Самарский, А.Н. Тихонов). Моделируются схемы механизма мышления и процессов генетики, алгоритмы диагностики медицинских заболеваний (А.А. Ляпунов, Б.В. Гнеденко, Н.М. Амосов, А.Г. Ивахненко, В.А. Ковалевский и др.).

    1959 г. Под руководством С.А. Лебедева создана машина БЭСМ-2 производительностью 10 тыс. опер./с. С ее применением связаны расчеты запусков космических ракет и первых в мире искусственных спутников Земли.

    1959 г. Создана машина М-20, главный конструктор С.А. Лебедев. Для своего времени одна из самых быстродействующих в мире (20 тыс. опер./с.). На этой машине было решено большинство теоретических и прикладных задач, связанных с развитием самых передовых областей науки и техники того времени. На основе М-20 была создана уникальная многопроцессорная М-40 - самая быстродействующая ЭВМ того времени в мире (40 тыс. опер./с.). На смену М-20 пришли полупроводниковые БЭСМ-4 и М-220 (200 тыс. опер./с.).

    Развитие компьютерной техники

    в 60-х годах 20 века.

    В 1960 г. короткое время группой CADASYL (Conference on Data System Languages) под руководством Джоя Вегштайна и при поддержке фирмы IBM был разработан стандартизированный деловой язык программирования COBOL (Comnon business oriented language - общепринятый деловой ориентированный язык). Этот язык ориентирован на решение экономических задач, а точнее - на обработку информации.

    В этом же году Ж. Шварц и др. из фирмы System Development разрабатывают язык программирования Jovial (Джовиал). Название происходит от Jule"s Own Version of International Algorithmic Language. Процедурный ЯВУ, версия Алгола-58. Использовался главным образом для военных приложений ВВС США.

    Фирма IBM разработала мощную вычислительную систему Stretch (IBM 7030).

    1961 г. Фирма IBM Deutschland реализовала подключение компьютера к телефонной линии с помощью модема.

    Также американским профессором Джоном Маккартни разработан язык LISP (List procssing language - язык обработки списков).

    Дж.Гордон, руководитель разработки систем моделирования фирмы IBM, создал язык GPSS (общецелевая система моделирования).

    Сотрудниками Манчестерского университета под руководством Т.Кильбурна создана вычислительная машина Atlas, в которой впервые реализована концепция виртуальной памяти. Появился первый миникомпьютер (PDP-1), до 1971 г., времени создания первого микропроцессора (Intel 4004).

    В 1962 г. Р.Грисуолд разработал язык программирования СНОБОЛ, ориентированный на обработку строк.

    Стив Рассел разработал первую компьютерную игру. Что это была за игра, к сожалению, не известно.

    Э.В.Евреиновым и Ю.Косаревым предложена модель коллектива вычислителей и обоснована возможность построения суперкомпьютеров на принципах параллельного выполнения операций, переменной логической структуры и конструктивной однородности.

    Фирма IBM выпустила первые устройства внешней памяти со съемными дисками.

    Кеннет Айверсон (Kenneth E. Iverson, IBM) опубликовал книгу, названную “A Programming Language” (APL). Первоначально этот язык служил нотацией для записи алгоритмов. Первая реализация APL/360 – в 1966 г. Adin Falkoff (Harvard, IBM). Имеются версии интерпретаторов для ПК. Из-за трудности чтения программ на АПЛ его иногда называют “Китайским Бейсиком”. Вообще-то это процедурный, очень компактный, язык сверхвысокого уровня. Требует специальной клавиатуры. Дальнейшее развитие – APL2.

    1963г. Утвержден американский стандартный код для обмена информацией - ASCII (American Standard Code Informatio Interchange).

    Фирма General Electric создала первую коммерческую СУБД (систему управления базами данных).

    1964г. У.Дал и К.Нюгорт создали язык моделирования СИМУЛА-1.

    В 1967г. под руководством С.А.Лебедева и В.М.Мельникова в ИТМ и ВТ создана быстродействующая вычислительная машина БЭСМ-6.

    За ним последовал "Эльбрус" - ЭВМ нового типа, производительностью 10 млн. опер./с.

    Развитие компьютерной техники

    в 70-х годах 20 века.

    В 1970г. сотрудник Национальной радиоастрономической обсерватории Чарльз Мурр создал язык программирования ФОРТ.

    Денис Ритчи и Кеннет Томсон выпускают первую версию Unix.

    Доктор Кодд публикует первую статью, посвященную реляционной модели данных.

    В 1971г. фирмой Intel (США) создан первый микропроцессор(МП) - программируемое логическое устройство, изготовленное по технологии СБИС.

    Процессор 4004 был 4-битный и мог выполнять 60 тыс. операций в секунду.

    1974 г. Фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами. Эдвард Робертс из фирмы MITS построил первый персональный компьютер Altair на новом чипе от Intel - 8080. Altair оказался первым массовым ПК, положившим, по существу, начало целой индустрии. В комплект входили процессор, 256-байтный модуль памяти, системная шина и некоторые другие мелочи.

    Молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft), являющуюся сегодня крупнейшим производителем программного обеспечения.

    Развитие компьютерной техники

    в 80-х годах 20 века.

    1981г. фирма Compaq выпустила первый Laptop.

    Никлаус Вирт разработал язык программирования МОДУЛА-2.

    Создан первый портативный компьютер - Osborne- 1 весом около 12 кг. Несмотря на довольно успешное начало, через два года компания обанкротилась.

    1981 г. Фирма IBM выпустила первый персональный компьютер IBM PC на базе микропроцессора 8088.

    1982 г. Фирма Intel выпустила микропроцессор 80286.

    Американская фирма по производству вычислительной техники IBM, занимавшая до этого ведущее положение по выпуску больших ЭВМ, приступила к изготовлению профессиональных персональных компьютеров IBM PC с операционной системой MS DOS.

    Фирма Sun начала выпускать первые рабочие станции.

    Фирма Lotus Development Corp. выпустила электронную таблицу Lotus 1-2-3.

    Английской фирмой Inmos на основе идей профессора Оксфордского университета Тони Хоара о "взаимодействующих последовательных процессах" и концепции экспериментального языка программирования Дэвида Мэя был создан язык ОККАМ.

    1985г. фирма Intel выпустила 32-битный микропроцессор 80386, состоящий из 250 тыс. транзисторов.

    Сеймур Крей создал суперкомпьютер CRAY-2 производительностью 1 млрд. операций в секунду.

    Фирма Microsoft выпустила первую версию графической операционной среды Windows.

    Появление нового языка программирования C++.

    Развитие компьютерной техники

    в 90-х годах 20 века.

    1990г. фирма Microsoft выпустила Windows 3.0.

    Тим Бернерс-Ли разработал язык HTML (Hypertext Markup Language - язык разметки гипертекста; основной формат Web-документов) и прототип Всемирной паутины.

    Cray выпустил суперкомпьютер Cray Y-MP C90 с 16 процессорами и со скоростью 16 Гфлопс.

    1991г.Фирма Microsoft выпустила ОС Windows 3.1.

    Разработан графический формат JPEG

    Филипп Циммерман придумал PGP, систему шифрования сообщений с открытым ключом.

    1992г. Появилась первая бесплатная операционная система с большими возможностями - Linux. Финский студент Линус Торвальдс (автор этой системы) решил поэкспериментировать с командами процессора Intel 386 и то, что получилось, выложил в Internet. Сотни программистов из разных стран мира стали дописывать и переделывать программу. Она превратилась в полнофункциональную работающую операционную систему. История умалчивает о том, кто решил назвать ее Linux, но как появилось это название - вполне понятно. "Linu" или "Lin" от имени создателя и "х" или "ux" - от UNIX, т.к. новая ОС была очень на нее похожа, только работала теперь и на компьютерах с архитектурой х86.

    DEC представил первый 64-битный процессор RISC Alpha.

    1993г. Фирма Intel выпустила 64-разрядный микропроцессор Pentium, который состоял из 3,1 млн. транзисторов и мог выполнять 112 млн. операций в секунду.

    Появился формат сжатия видео MPEG.

    1994 г. Начало выпуска фирмой Power Mac серии фирмы Apple Computers - Power PC.

    1995 г. фирма DEC объявила о выпуске пяти новых моделей персональных компьютеров Celebris XL.

    Компания NEC объявила о завершении разработок первого в мире кристалла с объемом памяти 1 Гбайт.

    Появилась операционная система Windows 95.

    SUN представила язык программирования Java.

    Появился формат RealAudio - альтернатива MPEG.

    1996 г.Фирма Microsoft выпустила Internet Explorer 3.0- достаточно серьезного конкурента Netscape Navigator.

    1997 г. Фирма Apple выпустила операционную систему Macintosh OS 8.

    Вывод

    Персональный компьютер быстро вошёл в нашу жизнь. Ещё несколько лет назад было редкостью увидеть какой – нибудь персональный компьютер - они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошёл в жизнь человека.

    Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

    Мои исследования

    Количество компьютеров у учащихся по школе за 2007 год.

    Количество учащихся

    Имеют компьютеры

    Процент от общего кол-ва

    Количество компьютеров у учащихся по школе за 2008 год.

    Количество учащихся

    Имеют компьютеры

    Процент от общего кол-ва

    Рост числа компьютеров у учащихся:

    Рост компьютеров в школе

    Заключение

    К сожалению, невозможно в рамках реферата охватить всю историю компьютеров. Можно было бы ещё долго рассказывать о том, как в маленьком городке Пало-Альто (шт. Калифорния) в научно-исследовательском центре Xerox PARK собрался цвет программистов того времени, чтобы разработать революционные концепции, в корне изменившие образ машин, и проложить дорогу для компьютеров конца XX века. Как талантливый школьник Билл Гейтс и его друг Пол Аллен познакомились с Эдом Робертсоном и создали удивительный язык БЕЙСИК для компьютера Altair, что позволило разрабатывать для него прикладные программы. Как постепенно менялся облик персонального компьютера, появились монитор и клавиатура, накопитель на гибких дисках, так называемых дискетах, а затем и жесткий диск. Неотъемлемыми принадлежностями стали принтер и «мышь». Можно было бы рассказать о невидимой войне на компьютерных рынках за право устанавливать стандарты между огромной корпорацией IBM, и молодой Apple, дерзнувшей с ней соревноваться, заставившей весь мир решать, что лучше Macintosh или PC? И о многих других интересных вещах, происходивших совсем недавно, но ставших уже историей.

    Для многих мир без компьютера – далёкая история, примерно такая же далёкая, как открытие Америки или Октябрьская революция. Но каждый раз включая компьютер, невозможно перестать удивляться человеческому гению, создавшему это чудо.

    Современные персональные IBM PC – совместимые компьютеры являются наиболее широко используемым видом компьютеров, их мощность постоянно растёт, а область применения расширяется. Эти компьютеры могут объединяться в сети, что позволяет десяткам и сотням пользователей лгко обмениваться информацией и одновременно получать общий доступ к базам данных. Средства электронной почты позволяют пользователям компьютеров с помощью обычной телефонной сети посылать текстовые и факсимильные сообщения в дручие города и страны и получать информацию из крупных банков данных. Глобальная система электронной связи Internet обеспечивает крайне низкую цену возможность оперативного получения информации из всех уголков земного шара, предоставляет возможности голосовой и факсимильной связи, облегчает создание внутрикорпоративных сетей передачи информации для фирм, имеющих отделения в разных городах и странах. Однако возможности IBM PC – совместимых персональных компьютеров по обработке информации всё же ограничены, и не во всех ситуациях их применение оправдано.

    Для понимания истории компьютерной техники рассмотренный реферат имеет, по крайней мере, два аспекта: первый – вся деятельность, связанна с автоматическими вычислениями, до создания компьютера ENIAC рассматривалась как предыстория; второй – развитие компьютерной техники определяется только в терминах технологии аппаратуры и схем микропроцессора.

    Список литературы:

    1. Гук М. «Аппаратные средства IBM PC» – СПб: «Питер», 1997г.

    2. Озерцовский С. «Микропроцессоры Intel: от 4004 до Pentium Pro», журналComputer Week #41 –

    3. Фигурнов В.Э. «IBM PC для пользователя» – М.: «Инфра-М», 1995г.

    4. Фигурнов В.Э. «IBM PC для пользователя. Краткий курс» – М.: 1999г.

    5. 1996г.Фролов А.В.,Фролов Г.В. «Аппаратное обеспечение IBM PC» – М.: ДИАЛОГ-МИФИ, 1992г.